Point-based backup for decentralized POMDPs: complexity and new algorithms

نویسندگان

  • Akshat Kumar
  • Shlomo Zilberstein
چکیده

Decentralized POMDPs provide an expressive framework for sequential multi-agent decision making. Despite their high complexity, there has been significant progress in scaling up existing algorithms, largely due to the use of pointbased methods. Performing point-based backup is a fundamental operation in state-of-the-art algorithms. We show that even a single backup step in the multi-agent setting is NP-Complete. Despite this negative worst-case result, we present an efficient and scalable optimal algorithm as well as a principled approximation scheme. The optimal algorithm exploits recent advances in the weighted CSP literature to overcome the complexity of the backup operation. The polytime approximation scheme provides a constant factor approximation guarantee based on the number of belief points. In experiments on standard domains, the optimal approach provides significant speedup (up to 2 orders of magnitude) over the previous best optimal algorithm and is able to increase the number of belief points by more than a factor of 3. The approximation scheme also works well in practice, providing near-optimal solutions to the backup problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Point-based policy generation for decentralized POMDPs

Memory-bounded techniques have shown great promise in solving complex multi-agent planning problems modeled as DEC-POMDPs. Much of the performance gains can be attributed to pruning techniques that alleviate the complexity of the exhaustive backup step of the original MBDP algorithm. Despite these improvements, state-of-the-art algorithms can still handle a relative small pool of candidate poli...

متن کامل

Point-based incremental pruning heuristic for solving finite-horizon DEC-POMDPs

Recent scaling up of decentralized partially observable Markov decision process (DEC-POMDP) solvers towards realistic applications is mainly due to approximate methods. Of this family, MEMORY BOUNDED DYNAMIC PROGRAMMING (MBDP), which combines in a suitable manner top-down heuristics and bottom-up value function updates, can solve DEC-POMDPs with large horizons. The performances of MBDP, can be,...

متن کامل

Towards Computing Optimal Policies for Decentralized POMDPs

The problem of deriving joint policies for a group of agents that maximze some joint reward function can be modelled as a decentralized partially observable Markov decision process (DEC-POMDP). Significant algorithms have been developed for single agent POMDPs however, with a few exceptions, effective algorithms for deriving policies for decentralized POMDPS have not been developed. As a first ...

متن کامل

Message-passing algorithms for large structured decentralized POMDPs

Decentralized POMDPs provide a rigorous framework for multi-agent decision-theoretic planning. However, their high complexity has limited scalability. In this work, we present a promising new class of algorithms based on probabilistic inference for infinite-horizon ND-POMDPs—a restricted Dec-POMDP model. We first transform the policy optimization problem to that of likelihood maximization in a ...

متن کامل

Point-Based Value Iteration for Continuous POMDPs

We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are restricted to discrete states, actions, and observations, but many real-world problems such as, for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demonstrate that the value fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010