Point-based backup for decentralized POMDPs: complexity and new algorithms
نویسندگان
چکیده
Decentralized POMDPs provide an expressive framework for sequential multi-agent decision making. Despite their high complexity, there has been significant progress in scaling up existing algorithms, largely due to the use of pointbased methods. Performing point-based backup is a fundamental operation in state-of-the-art algorithms. We show that even a single backup step in the multi-agent setting is NP-Complete. Despite this negative worst-case result, we present an efficient and scalable optimal algorithm as well as a principled approximation scheme. The optimal algorithm exploits recent advances in the weighted CSP literature to overcome the complexity of the backup operation. The polytime approximation scheme provides a constant factor approximation guarantee based on the number of belief points. In experiments on standard domains, the optimal approach provides significant speedup (up to 2 orders of magnitude) over the previous best optimal algorithm and is able to increase the number of belief points by more than a factor of 3. The approximation scheme also works well in practice, providing near-optimal solutions to the backup problem.
منابع مشابه
Point-based policy generation for decentralized POMDPs
Memory-bounded techniques have shown great promise in solving complex multi-agent planning problems modeled as DEC-POMDPs. Much of the performance gains can be attributed to pruning techniques that alleviate the complexity of the exhaustive backup step of the original MBDP algorithm. Despite these improvements, state-of-the-art algorithms can still handle a relative small pool of candidate poli...
متن کاملPoint-based incremental pruning heuristic for solving finite-horizon DEC-POMDPs
Recent scaling up of decentralized partially observable Markov decision process (DEC-POMDP) solvers towards realistic applications is mainly due to approximate methods. Of this family, MEMORY BOUNDED DYNAMIC PROGRAMMING (MBDP), which combines in a suitable manner top-down heuristics and bottom-up value function updates, can solve DEC-POMDPs with large horizons. The performances of MBDP, can be,...
متن کاملTowards Computing Optimal Policies for Decentralized POMDPs
The problem of deriving joint policies for a group of agents that maximze some joint reward function can be modelled as a decentralized partially observable Markov decision process (DEC-POMDP). Significant algorithms have been developed for single agent POMDPs however, with a few exceptions, effective algorithms for deriving policies for decentralized POMDPS have not been developed. As a first ...
متن کاملMessage-passing algorithms for large structured decentralized POMDPs
Decentralized POMDPs provide a rigorous framework for multi-agent decision-theoretic planning. However, their high complexity has limited scalability. In this work, we present a promising new class of algorithms based on probabilistic inference for infinite-horizon ND-POMDPs—a restricted Dec-POMDP model. We first transform the policy optimization problem to that of likelihood maximization in a ...
متن کاملPoint-Based Value Iteration for Continuous POMDPs
We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are restricted to discrete states, actions, and observations, but many real-world problems such as, for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demonstrate that the value fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010